
Department of Computer Science, Yazd University

CS Course 18-14-205: Geometric Spanner Networks

The Well-Separated Pair Decomposition

Davood Bakhshesh

Spring 2014 1 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

2 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

3 / 91

Introduction

Paul B. Callahan

The well-separated pair

decomposition(WSPD) was introduced by

Callahan and Kosaraju in 1992.

WSPD is a data structure that can be used to

efficiently solve a large variety of proximity

problems

We will use the WSPD to construct a

t-spanner with O(n) edges, for any given set

of n points in Rd, and any given constant

t > 1, in O(n logn) time.

S.Rao Kosaraju

4 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

5 / 91

Definition of the well-separated pair decomposition

Definition 9.1.1(Well-Separated Pair)

Let s > 0 be a real number, and let A and B be two finite sets of
points in Rd . We say that A and B are well-separated with
respect to s if there are two disjoint d-dimensional balls CA and
CB, such that

CA and CB have the same radius,
CA contains the bounding box R(A) of A,
CB contains the bounding box R(B) of B
the distance between CA and CB is greater than or equal
to s times the radius of CA.

6 / 91

Definition of the well-separated pair decomposition

A

B

7 / 91

Definition of the well-separated pair decomposition

Question

Is it possible we test in O(1) time whether A and B are
well-separated with respect to s?

8 / 91

Definition of the well-separated pair decomposition

Lemma 9.1.2.

Let s > 0 be a real number, let A and B be two finite sets of
points that are well-separated with respect to s, let p and p′ be
any two points in A, and let q and q′ be any two points in B.
Then

|pp′| ≤ (2/s)|pq|
|p′q′| ≤ (1 + 4/s)|pq|

9 / 91

Definition of the well-separated pair decomposition

Proof of Lemma 9.1.2.
Let CA and CB are two disjoint balls that contain the points of A
and B, respectively, that have the same radius, say ρ, and
whose distance is greater than or equal to sρ. Thus, we have

{
|pp′| ≤ 2ρ
|pq| ≥ sρ ⇒ |pp′| ≤ (2/s)|pq|.

By symmetric argument we have |qq′| ≤ (2/s)|pq|. By combining
these inequalities and applying the triangle inequality we get

|p′q′| ≤ |p′p|+|pq|+|qq′| ≤ (2/s)|pq|+|pq|+(2/s)|pq| = (1+4/s)|pq|.�

10 / 91

Definition of the well-separated pair decomposition

Approximating a well-separated

The second inequality in Lemma 9.1.2 implies that the distance
between an arbitrary point p in A and an arbitrary point q in B
approximates all the |A|.|B| distances between the pairs in the
Cartesian product A×B.

11 / 91

Definition of the well-separated pair decomposition

Definition 9.1.3

(Well-Separated Pair Decomposition.) Let S be a set of n
points in Rd, and let s > 0 be a real number. A well-separated
pair decomposition (WSPD) for S, with respect to s, is a
sequence

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
of pairs of nonempty subsets of S, for some integer m, such
that

for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated
with respect to s.
for any two distinct points p and q of S, there is exactly one
index i with 1 ≤ i ≤ m, such that

1 p ∈ Ai and q ∈ Bi, or
2 p ∈ Bi and q ∈ Ai.

The integer m is called the size of the WSPD.
12 / 91

Definition of the well-separated pair decomposition

Question

Does a WSPD exist for any set S?

Answer

Yes. We can consider WSPD for S as follows

{{pi}, {qi}} ∀ distinct points pi and qi of S

WSPD of size O(n)

The main result of this chapter will be an algorithm that
constructs, in O(n log n) time, a WSPD of size O(n), for any set
S of n points in Rd , and for any constant separation ratio s > 0.

13 / 91

Definition of the well-separated pair decomposition

Question

Does a WSPD exist for any set S?

Answer

Yes. We can consider WSPD for S as follows

{{pi}, {qi}} ∀ distinct points pi and qi of S

WSPD of size O(n)

The main result of this chapter will be an algorithm that
constructs, in O(n log n) time, a WSPD of size O(n), for any set
S of n points in Rd , and for any constant separation ratio s > 0.

13 / 91

Definition of the well-separated pair decomposition

Question

Does a WSPD exist for any set S?

Answer

Yes. We can consider WSPD for S as follows

{{pi}, {qi}} ∀ distinct points pi and qi of S

WSPD of size O(n)

The main result of this chapter will be an algorithm that
constructs, in O(n log n) time, a WSPD of size O(n), for any set
S of n points in Rd , and for any constant separation ratio s > 0.

13 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

14 / 91

Spanners Based on the WSPD

Basic Spanner Construction

1 Construct a well-separated pair decomposition with
separation ratio s > 4 for points set S.

2 Take one arbitrary edge for each pair of the decomposition.

This results in a t-spanner with t = s+4
s−4 .

15 / 91

Spanners Based on the WSPD

Question

Why the above construction results in a t-spanner with t = s+4
s−4?

Answer by induction on Euclidean distance p, q

Step1. Suppose distinct points p, q are closest pair.

16 / 91

Spanners Based on the WSPD

Question

Why the above construction results in a t-spanner with t = s+4
s−4?

Answer by induction on Euclidean distance p, q

Step1. Suppose distinct points p, q are closest pair.

p′ q′

p q

2
s =

1
2 − 1

t+1 <
1
2

|pp′| ≤ (2/s)|pq| < |pq|
2

< |pq|
Contradiction

16 / 91

Spanners Based on the WSPD

Step2.

p

p′

q

q′
P Q

t-path between p, q is L = P + {p′, q′}+Q

|L| = |P |+ |{p′, q′}|+ |Q| ≤ t|pp′|+ |p′q′|+ t|qq′|

≤ (2/s)|pq|+ (1 + 4/s)|pq|+ (2/s)|pq|

=
(

4(t+1)
s + 1

)
|pq| = t|pq|

17 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

18 / 91

The Split Tree

Question

How can we find a WSPD of size O(n) for a set of n points with
respect to s > 0 ?

The stages of the algorithms

1 In the first stage, a binary tree, called the split tree, is
constructed. This tree does not depend on s.

2 In the second stage, the split tree is used to construct the
WSPD itself.

19 / 91

The Split Tree

Question

How can we find a WSPD of size O(n) for a set of n points with
respect to s > 0 ?

The stages of the algorithms

1 In the first stage, a binary tree, called the split tree, is
constructed. This tree does not depend on s.

2 In the second stage, the split tree is used to construct the
WSPD itself.

19 / 91

The Split Tree

Hyperrectangle

A hyperrectangle R, or a d-dimensional axes-parallel
hyperrectangle, is the Cartesian product of d closed intervals as
follows

R = [l1, r1]× [l2, r2]× . . .× [ld, rd],

where li and ri are real numbers with li ≤ ri, 1 ≤ i ≤ d.
Li(R) := ri − li is side length of R along the i-th dimension.
Lmax(R) and Lmin(R) are as the maximum and minimum side
lengths of R along any dimension, respectively.
Let j be the index such that Lmax(R) = Lj(R). We define

h(R) := (lj + rj)/2

as the center of the largest interval of R.

20 / 91

The Split Tree

Hyperrectangle

A hyperrectangle R, or a d-dimensional axes-parallel
hyperrectangle, is the Cartesian product of d closed intervals as
follows

R = [l1, r1]× [l2, r2]× . . .× [ld, rd],

where li and ri are real numbers with li ≤ ri, 1 ≤ i ≤ d.
Li(R) := ri − li is side length of R along the i-th dimension.
Lmax(R) and Lmin(R) are as the maximum and minimum side
lengths of R along any dimension, respectively.
Let j be the index such that Lmax(R) = Lj(R). We define

h(R) := (lj + rj)/2

as the center of the largest interval of R.

20 / 91

The Split Tree

Hyperrectangle

A hyperrectangle R, or a d-dimensional axes-parallel
hyperrectangle, is the Cartesian product of d closed intervals as
follows

R = [l1, r1]× [l2, r2]× . . .× [ld, rd],

where li and ri are real numbers with li ≤ ri, 1 ≤ i ≤ d.
Li(R) := ri − li is side length of R along the i-th dimension.
Lmax(R) and Lmin(R) are as the maximum and minimum side
lengths of R along any dimension, respectively.
Let j be the index such that Lmax(R) = Lj(R). We define

h(R) := (lj + rj)/2

as the center of the largest interval of R.

20 / 91

The Split Tree

Hyperrectangle

A hyperrectangle R, or a d-dimensional axes-parallel
hyperrectangle, is the Cartesian product of d closed intervals as
follows

R = [l1, r1]× [l2, r2]× . . .× [ld, rd],

where li and ri are real numbers with li ≤ ri, 1 ≤ i ≤ d.
Li(R) := ri − li is side length of R along the i-th dimension.
Lmax(R) and Lmin(R) are as the maximum and minimum side
lengths of R along any dimension, respectively.
Let j be the index such that Lmax(R) = Lj(R). We define

h(R) := (lj + rj)/2

as the center of the largest interval of R.

20 / 91

The Split Tree
Definition of the Split Tree

The Split Tree

If S consists of only one point, then the split tree consists of one
single node that stores that point.

If |S| ≥ 2. Split R(S) into two hyperrectangles by cutting its
longest interval into two equal parts. Let S1 and S2 be the
subsets of S that are contained in these two new
hyperrectangles. The split tree for S consists of a root having
two subtrees, which are recursively defined split trees for S1
and S2

21 / 91

The Split Tree
Definition of the Split Tree

The Split Tree

If S consists of only one point, then the split tree consists of one
single node that stores that point.

If |S| ≥ 2. Split R(S) into two hyperrectangles by cutting its
longest interval into two equal parts. Let S1 and S2 be the
subsets of S that are contained in these two new
hyperrectangles. The split tree for S consists of a root having
two subtrees, which are recursively defined split trees for S1
and S2

21 / 91

The Split Tree
An Example of the Split Tree

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree
An Example of the Split Tree

u

v w

22 / 91

The Split Tree

Bounding Box and Hyperrectangle

R(u) := The smallest hyperrectangle that contains the points
stored in the subtree rooted at u.
R0(u) :=A hyperrectangle that contains R(u)

R0(u)

R(u)

x1 = h(R(u))

R0(v)
R0(w)

R(v)

R(w)

23 / 91

Algorithm of Split Tree

Algorithm SPLITTREE(S,R)
1. if |S| = 1
2. then creat a new node u;
3. R(u) := R(S);
4. R0(u) := R;
5. store with u the only point of S, and the two hyperrectangles R(u) and

R0(u), and set its two children pointers to be nil;
6. return node u
7. else compute the bounding box R(S) of S;
8. compute i such that Lmax(R(S)) = Li(R(S));
9. let H be the hyperplane with equation xi = h(R(S));
10. using H, split R into two hyperrectangles R1 and R2;
11. S1 := S ∩R1;
12. S2 := S \ S1;
13. v := SPLITTREE(S1, R1);
14. w := SPLITTREE(S2, R2);
15. create a new node u;
16. R(u) := R(S);
17. R0(u) := R;
18. store with u the two hyperrectangles R(u) and R0(u), and set its left and

right child pointers to v and w, respectively;
19. return node u

24 / 91

The Split Tree

Question

What is the worst-case time complexity of the SPLITTREE

algorithm in a direct implementation?
Answer: Θ(n2)

Can we improve the above time complexity?
Answer:Yes. In Section 9.3.2, we will give an improved
algorithm that constructs the split tree in O(n log n) time.

25 / 91

The Split Tree

Question

What is the worst-case time complexity of the SPLITTREE

algorithm in a direct implementation?
Answer: Θ(n2)

Can we improve the above time complexity?
Answer:Yes. In Section 9.3.2, we will give an improved
algorithm that constructs the split tree in O(n log n) time.

25 / 91

The Split Tree

Question

What is the worst-case time complexity of the SPLITTREE

algorithm in a direct implementation?
Answer: Θ(n2)

Can we improve the above time complexity?
Answer:Yes. In Section 9.3.2, we will give an improved
algorithm that constructs the split tree in O(n log n) time.

25 / 91

The Split Tree

Lemma 9.3.1

Let R be a hypercube that contains the bounding box R(S) of
the set S and that has sides of length Lmax(R(S)). Let T be the
tree that is computed by algorithm SPLITTREE(S,R), and let u
be any node of T . If u is not the root of T , then

Lmin(R0(u)) ≥ 1

2
· Lmax(R(π(u))),

where π(u) is the parent u.

26 / 91

The Split Tree

Proof by induction on the distance between u and the root

Step 1. Assume π(u) is the root.

u

π(u)

R(π(u)) = R(S)

Lmax(R(π(u))) = side length(R)

It follows from the algorithm that
Lmin(R0(u)) =

1
2
side length(R) = 1

2
Lmax(R(π(u)))

27 / 91

The Split Tree

Proof by induction on the distance between u and the root

Step 2. Assume π(u) is not the root. By the induction
hypothesis we have

Lmin(R0(π(u))) ≥ 1

2
· Lmax(R(π(π(u)))).

We distinguish two cases:

Case 1: Lmin(R0(u)) = Lmin(R0(π(u))).

Case 2: Lmin(R0(u)) 6= Lmin(R0(π(u))).

28 / 91

The Split Tree

Proof by induction on the distance between u and the root

Step 2. Assume π(u) is not the root. By the induction
hypothesis we have

Lmin(R0(π(u))) ≥ 1

2
· Lmax(R(π(π(u)))).

We distinguish two cases:

Case 1: Lmin(R0(u)) = Lmin(R0(π(u))).

Case 2: Lmin(R0(u)) 6= Lmin(R0(π(u))).

28 / 91

The Split Tree

Case 1: Lmin(R0(u)) = Lmin(R0(π(u))).

u π(u)

︷ ︸︸ ︷
Lmin(R0(π(u)))

R(π(u)) ⊆ R(π(π(u)))→ Lmax(R(π(π(u)))) ≥ Lmax(R(π(u)))

Then Lmin(R0(u)) = Lmin(R0(π(u)))

≥ 1
2
· Lmax(R(π(π(u))))

≥ 1
2
· Lmax(R(π(u)))

29 / 91

The Split Tree

Case 2: Lmin(R0(u)) 6= Lmin(R0(π(u))).

We must have

Lmin(R0(u)) < Lmin(R0(π(u))).

Let i be the index such that Lmax(R(π(u))) = Li(R(π(u))). We
can prove that

Li(R0(u)) = Lmin(R0(u)).

Using the above claim and the fact Li(R0(u)) ≥ 1
2 · Li(R(π(u))),

we have

Lmin(R0(u)) = Li(R0(u)) ≥ 1

2
·Li(R(π(u))) =

1

2
·Lmax(R(π(u))).

30 / 91

The Split Tree

Question

How can we construct the split tree in O(n log n) time?

Answer

We can construct the split tree in O(n log n) using the partial
split tree. Here, we will show how we can construct the partial
split tree and how we can construct the split tree using the
partial split tree.

31 / 91

The Split Tree

Question

How can we construct the split tree in O(n log n) time?

Answer

We can construct the split tree in O(n log n) using the partial
split tree. Here, we will show how we can construct the partial
split tree and how we can construct the split tree using the
partial split tree.

31 / 91

The Split Tree
Partial Split Tree

Partial Split Tree

A partial split tree is defined in the same way as the split tree,
except that subsets represented by the leaves may have size
larger that 1.

Observation

Clearly, the main problem is to compute, in O(n) time, a partial
split tree, such that each leaf corresponds to a subset of size at
most n/2.

32 / 91

The Split Tree
Partial Split Tree

Partial Split Tree

A partial split tree is defined in the same way as the split tree,
except that subsets represented by the leaves may have size
larger that 1.

Observation

Clearly, the main problem is to compute, in O(n) time, a partial
split tree, such that each leaf corresponds to a subset of size at
most n/2.

32 / 91

The Split Tree
Partial Split Tree

Algorithm PARTIALSPLITTREE(S,R, (LSi)1≤i≤d)

This algorithm constructs a partial split tree for set S in O(n)
time. We state the algorithm by an example.

33 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

34 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

p1 p2 p3 p4 p5 p6 p7 p8LS1 :

p5 p3 p6 p7 p1 p2 p8 p4LS2 :

34 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

p1 p2 p3 p4 p5 p6 p7 p8LS1 :

p5 p3 p6 p7 p1 p2 p8 p4LS2 :

p1 p2 p3 p4 p5 p6 p7 p8CLS1 :

p5 p3 p6 p7 p1 p2 p8 p4CLS2 :

34 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

p1 p2 p3 p4 p5 p6 p7 p8LS1 :

p5 p3 p6 p7 p1 p2 p8 p4LS2 :

p1 p2 p3 p4 p5 p6 p7 p8CLS1 :

p5 p3 p6 p7 p1 p2 p8 p4CLS2 :

u
v w

v

v

34 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

p1 p2 p3 p4 p5 p6 p7 p8LS1 :

p5 p3 p6 p7 p1 p2 p8 p4LS2 :

p1 p2 p3 p4 p5 p6 p7 p8CLS1 :

p5 p3 p6 p7 p1 p2 p8 p4CLS2 :

u
v w

v

v

x y

x x

x x

34 / 91

The Split Tree
Partial Split tree

p1
p2

p3

p4

p5

p6 p7

p8

p1 p2 p3 p4 p5 p6 p7 p8LS1 :

p5 p3 p6 p7 p1 p2 p8 p4LS2 :

p1 p2 p3 p4 p5 p6 p7 p8CLS1 :

p5 p3 p6 p7 p1 p2 p8 p4CLS2 :

u
v w

v

v

x y

x x

x x

z t

t t

t t

34 / 91

The Split Tree
Partial Split tree

u
v w

x y

z t

p1
p2

p3

p4

p5

p6 p7

p8

Partial Split Tree

35 / 91

The Split Tree
Partial Split tree

u
v w

x y

z t

p1
p2

p3

p4

p5

p6 p7

p8

Partial Split Treep1

p1

LSv
1 :

LSv
2 :

35 / 91

The Split Tree
Partial Split tree

u
v w

x y

z t

p1
p2

p3

p4

p5

p6 p7

p8

Partial Split Treep1

p1

LSv
1 :

LSv
2 :

LSx
1 :

LSx
2 :

p2 p3

p3 p2

35 / 91

The Split Tree
Partial Split tree

u
v w

x y

z t

p1
p2

p3

p4

p5

p6 p7

p8

Partial Split Treep1

p1

LSv
1 :

LSv
2 :

LSx
1 :

LSx
2 :

p2 p3

p3 p2

LSz
1 :

LSz
2 :

p5 p6 p7

p5 p6 p7

35 / 91

The Split Tree
Partial Split tree

u
v w

x y

z t

p1
p2

p3

p4

p5

p6 p7

p8

Partial Split Treep1

p1

LSv
1 :

LSv
2 :

LSx
1 :

LSx
2 :

p2 p3

p3 p2

LSz
1 :

LSz
2 :

p5 p6 p7

p5 p6 p7

LSt
1 :

LSt
2 :

p4 p8

p8 p4

35 / 91

The Split Tree
Partial Split tree

Lemma 9.3.2

Algorithm PARTIALSPLITTREE(S,R, (LSi)1≤i≤d) computes a
partial split tree T that satisfies following conditions

1 Each leaf u of T corresponds to a subset Su of size at most
n/2.

2 Each node u of T stores two hyperrectangles R(u) and
R0(u), which are the same hyperrectangles as in algorithm
SplitTree.

3 Each leaf u of T stores the following additional information.

A collection of doubly-linked lists LSu
i , 1 ≤ i ≤ d, where LSu

i

contains the points of Su, sorted in nondecreasing order of
their i-th coordinates.
The d lists LSu

i are connected by cross-pointers.

The running time of the algorithm is O(n).
36 / 91

Question

How can we construct the split tree using the partial split tree?

Answer

Run algorithm PARTIALSPLITTREE(S,R, (LSi)1≤i≤d), that
computes, in O(n) time, a partial split tree. Then, for each leaf
u of this tree, recursively continue this process. (Observe that
in recursive calls, preprocessing is not necessary.)

Theorem 9.3.3

Let S be a set of n points in Rd. The split tree for S can be
computed in O(n log n) time.

37 / 91

Question

How can we construct the split tree using the partial split tree?

Answer

Run algorithm PARTIALSPLITTREE(S,R, (LSi)1≤i≤d), that
computes, in O(n) time, a partial split tree. Then, for each leaf
u of this tree, recursively continue this process. (Observe that
in recursive calls, preprocessing is not necessary.)

Theorem 9.3.3

Let S be a set of n points in Rd. The split tree for S can be
computed in O(n log n) time.

37 / 91

Question

How can we construct the split tree using the partial split tree?

Answer

Run algorithm PARTIALSPLITTREE(S,R, (LSi)1≤i≤d), that
computes, in O(n) time, a partial split tree. Then, for each leaf
u of this tree, recursively continue this process. (Observe that
in recursive calls, preprocessing is not necessary.)

Theorem 9.3.3

Let S be a set of n points in Rd. The split tree for S can be
computed in O(n log n) time.

37 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

38 / 91

Computing the Well-Separated Pair Decomposition

Algorithm COMPUTEWSPD(T, s)
Input: Split Tree T for the point set S and a real number s > 0.
Output: WSPD for S.
1. for each internal node u of T
2. v :=left child of u;
3. w :=right child of u;
4. FINDPAIRS(v,w);
5.

39 / 91

Computing the Well-Separated Pair Decomposition

Algorithm FINDPAIRS(v, w)
Input: nodes v and w of the split tree T for S, whose subtrees are

disjoint.
Output: A collection of WSP pairs {A,B}, where A is sorted in

subtree of v, and B is sorted in subtree of w.
1. if Sv and Sw are well-separated with respect to s
2. then return the node pair {v, w}
3. else if Lmax(R(v)) ≤ Lmax(R(w))
4. then
5. wl := left child of w;
6. wr := right child of w;
7. FINDPAIRS(v, wl);
8. FINDPAIRS(v, wr);
9. else vl := left child of v;
10. vr := right child of v;
11. FINDPAIRS(vl, w);
12. FINDPAIRS(vr, w);
13. 40 / 91

Computing the Well-Separated Pair Decomposition
An Example

x1

x2

Split Tree
u

x1 x2

41 / 91

Computing the Well-Separated Pair Decomposition
An Example

x1

x2

Split Tree
u

x1 x2

x1 x2

WSPD

41 / 91

Computing the Well-Separated Pair Decomposition
An Example

x1

x2

x3

x1 x2

x3

Split Tree

42 / 91

Computing the Well-Separated Pair Decomposition
An Example

x1

x2

x3

x1 x2

x3

x1

x2

x3

WSPD

Split Tree

42 / 91

Computing the Well-Separated Pair Decomposition
An Example

x1

x2

x3

x1 x2

x3

x1

x2

x3

WSPD

Split Tree

x1

x2

x3WSPD

42 / 91

Computing the Well-Separated Pair Decomposition

Questions

Does the algorithm FINDPAIRS(v, w) terminate? Why?
How do you prove that the algorithm
COMPUTEWSPD(T, s) computes a WSPD for S?
What is the running time of algorithm
COMPUTEWSPD(T, s)?

43 / 91

Computing the Well-Separated Pair Decomposition

Questions

Does the algorithm FINDPAIRS(v, w) terminate? Why?
How do you prove that the algorithm
COMPUTEWSPD(T, s) computes a WSPD for S?
What is the running time of algorithm
COMPUTEWSPD(T, s)?

43 / 91

Computing the Well-Separated Pair Decomposition

Questions

Does the algorithm FINDPAIRS(v, w) terminate? Why?
How do you prove that the algorithm
COMPUTEWSPD(T, s) computes a WSPD for S?
What is the running time of algorithm
COMPUTEWSPD(T, s)?

43 / 91

Computing the Well-Separated Pair Decomposition

Lemma 9.4.1

Let vi, wi, 1 ≤ i ≤ m, be the sequence of node pairs returned by
algorithm COMPUTEWSPD(T, s). The sequence

{Sv1 , Sw1}, {Sv2 , Sw2}, . . . , {Svm , Swm}

is a WSPD for the set S with respect to s.

Lemma 9.4.2

Let m be the size of the WSPD for S that is computed by
algorithm COMPUTEWSPD(T, s). The running time of this
algorithm is O(m). (This does not include the time to compute
the split tree T .)

44 / 91

Computing the Well-Separated Pair Decomposition

Lemma 9.4.1

Let vi, wi, 1 ≤ i ≤ m, be the sequence of node pairs returned by
algorithm COMPUTEWSPD(T, s). The sequence

{Sv1 , Sw1}, {Sv2 , Sw2}, . . . , {Svm , Swm}

is a WSPD for the set S with respect to s.

Lemma 9.4.2

Let m be the size of the WSPD for S that is computed by
algorithm COMPUTEWSPD(T, s). The running time of this
algorithm is O(m). (This does not include the time to compute
the split tree T .)

44 / 91

Computing the Well-Separated Pair Decomposition

Representation of the WSPD

For each pair A,B in the WSPD, there are two nodes v and w
in the split tree T such that A = Sv and B = Sw. Hence, the
WSPD can be represented by m pairs of nodes of T .

45 / 91

Computing the Well-Separated Pair Decomposition

Question

What is the good upper bound of m which is determined by the
algorithm COMPUTEWSPD(T, s)?

46 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Proposition

There may be a node a and Θ(n) nodes b in split tree T for
which {Sa, Sb} is a pair in the WSPD. Thus, the upper bound is

m = Θ(n2).

Did we compute the upper bound correctly?

We can use the exact analysis of the algorithm
COMPUTEWSPD(T, s) to get the better upper bound on m.
How?

47 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Proposition

There may be a node a and Θ(n) nodes b in split tree T for
which {Sa, Sb} is a pair in the WSPD. Thus, the upper bound is

m = Θ(n2).

Did we compute the upper bound correctly?

We can use the exact analysis of the algorithm
COMPUTEWSPD(T, s) to get the better upper bound on m.
How?

47 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Proposition

There may be a node a and Θ(n) nodes b in split tree T for
which {Sa, Sb} is a pair in the WSPD. Thus, the upper bound is

m = Θ(n2).

Did we compute the upper bound correctly?

We can use the exact analysis of the algorithm
COMPUTEWSPD(T, s) to get the better upper bound on m.
How?

47 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

The Main Idea

Give to every well-separated pair a direction.
Use packing argument to show that every node is involved
in at most small number (dependent only on s) of directed
pairs.

48 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

The Main Idea

Give to every well-separated pair a direction.
Use packing argument to show that every node is involved
in at most small number (dependent only on s) of directed
pairs.

48 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Lemma 9.4.3.

Let C be a hypercube in Rd, let l be the side length of C, and let
α be a positive real number. Let b1, b2, . . . bk be nodes of the
split tree T such that

1 bi is not the root of T for all i with 1 ≤ i ≤ k.
2 the sets Sbi , 1 ≤ i ≤ k, are pairwise disjoint.
3 Lmax(R(π(bi))) ≥ l/α for all i with 1 ≤ i ≤ k.
4 R(bi) ∩ C 6= ∅ for all i with 1 ≤ i ≤ k.

Then k ≤ (2α+ 2)d.

49 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Sketch of Proof

C0 R0(b0)

C4 R0(b4)

C3 R0(b3)

C1 R0(b1)
C2 R0(b2)

C

50 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Sketch of Proof

C0 R0(b0)

C4 R0(b4)

C3 R0(b3)

C1 R0(b1)
C2 R0(b2)

C

C ′

50 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Lemma 9.4.4.

Let a and b be two nodes of the split tree T , and assume that
{Sa, Sb} is a pair in the WSPD constructed by algorithm
COMPUTEWSPD(T, s). Then at least one of the following two
claims holds.

1 Sπ(a) and Sb are not well-separated and

{
Lmax(R(b)) ≤ Lmax(R(π(a)))
Lmax(R(π(a))) ≤ Lmax(R(π(b)))

2 Sπ(b) and Sa are not well-separated and

{
Lmax(R(a)) ≤ Lmax(R(π(b)))
Lmax(R(π(b))) ≤ Lmax(R(π(a)))

51 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Lemma 9.4.5.

Let a be any node of the split tree T . There are at most
((2s+ 4)

√
d+ 4)d nodes b in T such that (Sa, Sb) is a directed

pair in the WSPD computed by algorithm
COMPUTEWSPD(T, s).

52 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Proof

Suppose (Sa, Sb) is a directed pair in the WSPD. It is clear that

Lmax(R(b)) ≤ Lmax(R(π(a))).

Let Ca and Cb be the balls of radius
√
d
2 · Lmax(R(π(a))) that are

centered at the centers of R(π(a)) and R(b), respectively. We
claim that

|R(π(a))R(b)| ≤ (s/2 + 1)
√
d · Lmax(R(π(a))).

We consider two cases:
Case 1: Ca and Cb are not disjoint.

Case 2: Ca and Cb are disjoint.

53 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Case 1: Ca and Cb are not disjoint.

R(π(a))

R(b)

x
y

h

h

Ca Cb

h =
√
d
2
· Lmax(R(π(a)))

|R(π(a))R(b)| ≤ |xy| ≤
√
d · Lmax(R(π(a))).

≤ (s/2 + 1)
√
d · Lmax(R(π(a)))

54 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Case 2: Ca and Cb are disjoint.

R(π(a))R(b)

x

hh

Ca Cbh =
√
d
2
· Lmax(R(π(a)))

y

|CaCb| = |xy| −
√
d · Lmax(R(π(a)))

≥ |R(π(a)R(b))| −
√
d · Lmax(R(π(a)))

|CaCb| < s(
√
d) · Lmax(R(π(a))).

|R(π(a))R(b)| ≤ (s/2 + 1)
√
d · Lmax(R(π(a)))

55 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Rest of the Proof

C

R(π(a))

y

R(b)

︷ ︸︸ ︷
((s+ 2)

√
d+ 1) · Lmax(R(π(a)))

`

R(b) ∩ C 6= ∅
Lmax(R(π(b))) ≥ `

(s+2)
√
d+1

56 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Theorem 9.4.6(WSPD Theorem)

Let S be a set of n points in Rd and let s > 0 be a real number.
1 The split tree for S can be computed in O(n log n) time.

This tree has size O(n) and does not depend on the value
of s.

2 Given the split tree, we can compute in O(sdn) time, a
WSPD for S with respect to s of size O(sdn). This WSPD
can be represented implicitly in O(sdn) space.

57 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Corollary 9.4.7(WSPD-Spanner)

Let S be a set of n points in Rd and let t > 1 be a real number.
In O(n log n+ n/(t− 1)d) time, we can construct a t-spanner for
S having O(n/(t− 1)d) edges.

The WSPD-spanner has O(n) edges and can be constructed in
O(n log n) time.

58 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Corollary 9.4.7(WSPD-Spanner)

Let S be a set of n points in Rd and let t > 1 be a real number.
In O(n log n+ n/(t− 1)d) time, we can construct a t-spanner for
S having O(n/(t− 1)d) edges.

The WSPD-spanner has O(n) edges and can be constructed in
O(n log n) time.

58 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Question

What is the quality measures such as degree, diameter, weight
and etc for the WSPD-spanner?

Answer

1 Degree:There is no nontrivial bound on the degree of the
WSPD-spanner.Why?

2 diameter:There is no nontrivial bound on the diameter of
the WSPD-spanner. Why?

3 weight:wt(WSPD-spanner(S)) = O(log n · wt(MST(S))).
Why?

59 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Question

What is the quality measures such as degree, diameter, weight
and etc for the WSPD-spanner?

Answer

1 Degree:There is no nontrivial bound on the degree of the
WSPD-spanner.Why?

2 diameter:There is no nontrivial bound on the diameter of
the WSPD-spanner. Why?

3 weight:wt(WSPD-spanner(S)) = O(log n · wt(MST(S))).
Why?

59 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Question

What is the quality measures such as degree, diameter, weight
and etc for the WSPD-spanner?

Answer

1 Degree:There is no nontrivial bound on the degree of the
WSPD-spanner.Why?

2 diameter:There is no nontrivial bound on the diameter of
the WSPD-spanner. Why?

3 weight:wt(WSPD-spanner(S)) = O(log n · wt(MST(S))).
Why?

59 / 91

Computing the Well-Separated Pair Decomposition
The analysis of algorithm COMPUTEWSPD(T, s)

Question

What is the quality measures such as degree, diameter, weight
and etc for the WSPD-spanner?

Answer

1 Degree:There is no nontrivial bound on the degree of the
WSPD-spanner.Why?

2 diameter:There is no nontrivial bound on the diameter of
the WSPD-spanner. Why?

3 weight:wt(WSPD-spanner(S)) = O(log n · wt(MST(S))).
Why?

59 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

60 / 91

Finding the pair that separate two points

PAIR QUERY PROBLEM

Given a WSPD {Ai, Bi}, 1 ≤ i ≤ m, for a set S of n points in
Rd, and given two distinct points p and q in S, compute the
index i for which p ∈ Ai and q ∈ Bi, or p ∈ Bi and q ∈ Ai.

How do you solve the PAIR QUERY PROBLEM?

61 / 91

Finding the pair that separate two points

PAIR QUERY PROBLEM

Given a WSPD {Ai, Bi}, 1 ≤ i ≤ m, for a set S of n points in
Rd, and given two distinct points p and q in S, compute the
index i for which p ∈ Ai and q ∈ Bi, or p ∈ Bi and q ∈ Ai.

How do you solve the PAIR QUERY PROBLEM?

61 / 91

Finding the pair that separate two points

Methods

1 Centroid edges.
2 Path decomposition.

62 / 91

Finding the pair that separate two points

Binary Recursion Tree

For each internal node u of the split tree T , we define a binary
recursion tree RT (v, w) where v and w are two children of u, as
follows:

If Sv and Sw are well-separated, then RT (v, w) is a single
node storing R(v) and R(w), and two pointers to the nodes
v and w in T .
Otherwise

if Lmax(R(v)) ≤ Lmax(R(w)). Then RT (v, w) is a root
storing the R(v) and R(w). It’s two children are recursion
trees RT (v, wl) and RT (v, wr).
if Lmax(R(v)) > Lmax(R(w)). Then RT (v, w) is a root
storing the R(v) and R(w). It’s two children are recursion
trees RT (vl, w) and RT (vr, w).

63 / 91

Finding the pair that separate two points

u

v
w

zx1
x2

x3 x4

x5

x5

x1 x2
x3 x4

64 / 91

Finding the pair that separate two points

u

v
w

zx1
x2

x3 x4

x5

x5

x1 x2
x3 x4

v, w

v, z
v, x5

x1, x5 x2, x5

RT (v, w)

Internal node: u

64 / 91

Finding the pair that separate two points

u

v
w

zx1
x2

x3 x4

x5

x5

x1 x2
x3 x4

v, w

v, z
v, x5

x1, x5 x2, x5

RT (v, w) RT (x1, x2)

x1, x2

Internal node: u
Internal node: v

64 / 91

Finding the pair that separate two points

u

v
w

zx1
x2

x3 x4

x5

x5

x1 x2
x3 x4

v, w

v, z
v, x5

x1, x5 x2, x5

RT (v, w) RT (x1, x2)

x1, x2

RT (z, x5)

z, x5

x3, x5 x3, x5

Internal node: u
Internal node: v Internal node: w

64 / 91

Finding the pair that separate two points

u

v
w

zx1
x2

x3 x4

x5

x5

x1 x2
x3 x4

v, w

v, z
v, x5

x1, x5 x2, x5

RT (v, w) RT (x1, x2)

x1, x2

RT (z, x5)

z, x5

x3, x5 x3, x5

Internal node: u
Internal node: v Internal node: w Internal node: z

RT (x3, x4)

x3, x4

64 / 91

Finding the pair that separate two points

Observation

Each pair in the WSPD corresponds to a unique leaf in exactly
one of the recursion trees. Conversely, any leaf in any recursion
tree corresponds to exactly one pair in the WSPD.

65 / 91

Finding the pair that separate two points

An algorithm to solve the PAIR QUERY problem for two distinct
points p and q

1 Find the lowest common ancestor u of the p and q in the
split tree T . v := left_child(u) and w := right_child(u)

2 Walking down the tree RT (v, w) to find the leaf ` that stores
pointers to a and b such that p ∈ R(a) and q ∈ R(b). How?

66 / 91

Finding the pair that separate two points

An algorithm to solve the PAIR QUERY problem for two distinct
points p and q

1 Find the lowest common ancestor u of the p and q in the
split tree T . v := left_child(u) and w := right_child(u)

2 Walking down the tree RT (v, w) to find the leaf ` that stores
pointers to a and b such that p ∈ R(a) and q ∈ R(b). How?

66 / 91

Finding the pair that separate two points

Questions

Dose the above algorithm work correctly?
What is the time complexity of the above algorithm?

67 / 91

Finding the pair that separate two points

Questions

Dose the above algorithm work correctly?
What is the time complexity of the above algorithm?

67 / 91

Finding the pair that separate two points
Centroid edges

Answering pair queries using centroid edges

1 Find the lowest common ancestor u of the p and q in the
split tree T . v := left_child(u) and w := right_child(u)

2 Find the centroid edge e = (y, x) of RT (v, w). Let x be the
endpoint of e that is farthest away from the root of
RT (v, w).

3 Let ax and bx be the two nodes of T that correspond to x,
where R(ax) ⊆ R(v) and R(bx) ⊆ R(w)

4 If p ∈ R(ax) and q ∈ R(bx), walking down the subtree of
RT (v, w) rooted at x.

5 Otherwise, walking down the tree obtained from RT (v, w)
by deleting the subtree rooted at x.

68 / 91

Finding the pair that separate two points
Centroid edges

Theorem 9.5.2

Let S be a set of n points in Rd , and let s > 0 be a real number.
The WSPD of Theorem 9.4.6 can be represented in O(sdn)
space, such that for any two distinct points p and q in S, a pair
query can be answered in O(log n) time. This representation
can be computed in O(sdn log n) time.

69 / 91

Finding the pair that separate two points
Path decomposition

Basic Idea of the Path Decomposition

Split Tree

p q

p ∈ Svi q ∈ Swi

70 / 91

Finding the pair that separate two points
Path decomposition

Basic Idea of the Path Decomposition

Split Tree

p q

p ∈ Svi q ∈ Swi

u′
pq

u′
qp

upq

uqp

70 / 91

Finding the pair that separate two points
Path decomposition

Basic Idea of the Path Decomposition

Split Tree

p q

p ∈ Svi q ∈ Swi

u′
pq

u′
qp

upq

uqp

vi wi

70 / 91

Finding the pair that separate two points
Path decomposition

Lemma 9.5.3.

Let b and b′ be two nodes in the split tree T such that b is in the
subtree of b′ and the path between them contains at least d
edges. Then

Lmax(R(b)) ≤ 1

2
· Lmax(R(b′)).

71 / 91

Finding the pair that separate two points
Path decomposition

Proof

It is sufficient to prove that for each 1 ≤ i ≤ d,

Li(R(b)) ≤ 1

2
· Lmax(R(b′)).

Let b′′ be the child of b′ such that b is in the subtree of b′′.

We have two cases:
1 There is a node u on the path between b and b′′ such that

algorithm SPLITTREE splits R(π(u)) along dimension i.
2 For each node u on the path between b and b′′ algorithm

SPLITTREE splits R(π(u)) along a dimension different from
i.

72 / 91

Finding the pair that separate two points
Path decomposition

Proof of Case 1

Li(R(b)) ≤Li(R(u))

≤1

2
· Li(R(π(u)))

≤1

2
· Li(R(b′))

≤1

2
· Lmax(R(b′)).

73 / 91

Finding the pair that separate two points
Path decomposition

Proof of Case 2

Based on the pigeonhole principle, there is an index j 6= i, and
two distinct nodes u and v on the path, such that R(π(u)) and
R(π(v)) are split along dimension j. W.L.G u is in the subtree
of v. Then

Li(R(b)) ≤Li(R(π(u)))

≤Lj(R(π(u)))

≤Lj(R(v)

≤1

2
· Lj(R(π(v)))

≤1

2
· Lj(R(b′))

≤1

2
· Lmax(R(b′)).

74 / 91

Finding the pair that separate two points
Path decomposition

Lemma 9.5.4

Let A and B be two bounded subsets of Rd , let p be a point in
A, let q be a point in B, and let s > 0 be a real number and
α := 2

(s+4)
√
d
.

1 If A and B are well-separated with respect to s, then both
Lmax(R(A)) and Lmax(R(B)) are less than or equal to
(2/s)|pq|.

2 If both Lmax(R(A)) and Lmax(R(B)) are less than or equal
to α|pq|, then A and B are well-separated with respect to s.

75 / 91

Finding the pair that separate two points
Path decomposition

Definition

For any ordered pair (p, q) of distinct points in the point set S,
we define the following two nodes in T :

upq is the highest node u on the path in T from the leaf
storing p to the root, such that Lmax(R(u)) ≤ (2/s)|pq|.
u′pq is the highest node u on the path in T from the leaf
storing p to the root, such that Lmax(R(u)) ≤ α|pq|.

For each i with 1 ≤ i ≤ m, let vi and wi be the nodes in T such
that Ai = Svi and Bi = Swi .

76 / 91

Finding the pair that separate two points
Path decomposition

Lemma 9.5.5

Let p and q be two distinct points of S, and let i be the index
such that (i) p ∈ Ai and q ∈ Bi, or (ii) p ∈ Bi and q ∈ Ai .
Assume without loss of generality that (i)holds.

1 If we follow the path in T from the leaf storing p to the root,
then we encounter, in this order, the nodes u′pq, vi , and upq.

2 If we follow the path in T from the leaf storing q to the root,
then we encounter, in this order, the nodes u′qp, wi , and
uqp.

3 The path in T between u′pq and upq contains O(log 1
s)

nodes.
4 The path in T between u′qp and uqp contains O(log 1

s)
nodes.

5 Given pointers to the nodes upq and uqp, we can compute
the nodes vi and wi in O(log 1

s) time. 77 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2.
2. For each path P in the partition of T , find the TP .
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively .
4. Find nodes upq on P using TP .
5. Find nodes uqp on Q using TQ.
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

78 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.
4. Find nodes upq on P using TP .
5. Find nodes uqp on Q using TQ.
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

79 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .O(n)
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.
4. Find nodes upq on P using TP .
5. Find nodes uqp on Q using TQ.
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

80 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .O(n)
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.O(log n)
4. Find nodes upq on P using TP .
5. Find nodes uqp on Q using TQ.
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

81 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .O(n)
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.O(log n)
4. Find nodes upq on P using TP .O(log n)
5. Find nodes uqp on Q using TQ.
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

82 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .O(n)
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.O(log n)
4. Find nodes upq on P using TP .O(log n)
5. Find nodes uqp on Q using TQ.O(log n)
6. Find nodes vi which p ∈ Svi and q ∈ Swi .
7. return vi and wi.

83 / 91

Finding the pair that separate two points
Path decomposition

Algorithm PAIRQUERY(p, q)
1. Partition the Split tree T into pairwise disjoint paths.%see

section 2.3.2. O(n)
2. For each path P in the partition of T , find the TP .O(n)
3. Find the paths P and Q in the partition of T that contains

the node upq and uqp, respectively.O(log n)
4. Find nodes upq on P using TP .O(log n)
5. Find nodes uqp on Q using TQ.O(log n)
6. Find nodes vi which p ∈ Svi and q ∈ Swi .O(log 1

s)
7. return vi and wi.

84 / 91

Finding the pair that separate two points
Path decomposition

Theorem 9.5.6.

Let S be a set of n points in Rd , and let s > 0 be a real number.
The WSPD of Theorem 9.4.6 can be represented in O(sdn)
space, such that for any two distinct points p and q in S, a pair
query can be answered in O(log n+ log 1/s) time. Given the
split tree T and this WSPD, this representation can be
computed in O(n) time.

85 / 91

Outline

1 Introduction
2 Definition of the well-separated pair decomposition
3 Spanners Based on the WSPD
4 The split tree
5 Computing the Well-Separated Pair Decomposition
6 Finding the pair that separate two points
7 Extension to Other Metrics

86 / 91

Extention to Other Metrics

Metric Space

A metric space is a pair (S, δ), where S is a (finite or infinite)
set, whose elements are called points, and δ : S × S −→ R is a
function that assigns a distance δ(p, q) to any two points p and q
in S, and that satisfies the following four conditions:

1 For all points p and q in S, δ(p, q) ≥ 0.
2 For all points p and q in S, δ(p, q) = 0 if and only if p = q.
3 For all points p and q in S, δ(p, q) = δ(q, p).
4 For all points p, q, and r in S, δ(p, q) ≥ δ(p, r) + δ(r, q).

87 / 91

Extention to Other Metrics

Metric Space

A metric space is a pair (S, δ), where S is a (finite or infinite)
set, whose elements are called points, and δ : S × S −→ R is a
function that assigns a distance δ(p, q) to any two points p and q
in S, and that satisfies the following four conditions:

1 For all points p and q in S, δ(p, q) ≥ 0.
2 For all points p and q in S, δ(p, q) = 0 if and only if p = q.
3 For all points p and q in S, δ(p, q) = δ(q, p).
4 For all points p, q, and r in S, δ(p, q) ≥ δ(p, r) + δ(r, q).

87 / 91

Extention to Other Metrics

Metric Space

A metric space is a pair (S, δ), where S is a (finite or infinite)
set, whose elements are called points, and δ : S × S −→ R is a
function that assigns a distance δ(p, q) to any two points p and q
in S, and that satisfies the following four conditions:

1 For all points p and q in S, δ(p, q) ≥ 0.
2 For all points p and q in S, δ(p, q) = 0 if and only if p = q.
3 For all points p and q in S, δ(p, q) = δ(q, p).
4 For all points p, q, and r in S, δ(p, q) ≥ δ(p, r) + δ(r, q).

87 / 91

Extention to Other Metrics

Metric Space

A metric space is a pair (S, δ), where S is a (finite or infinite)
set, whose elements are called points, and δ : S × S −→ R is a
function that assigns a distance δ(p, q) to any two points p and q
in S, and that satisfies the following four conditions:

1 For all points p and q in S, δ(p, q) ≥ 0.
2 For all points p and q in S, δ(p, q) = 0 if and only if p = q.
3 For all points p and q in S, δ(p, q) = δ(q, p).
4 For all points p, q, and r in S, δ(p, q) ≥ δ(p, r) + δ(r, q).

87 / 91

Extention to Other Metrics

Diameter and Distance

The diameter D(A) of a subset A of S is defined as

D(A) := max{δ(a, b) : a, b ∈ A}.

The distance δ(A,B) of two subsets A and B of S is
defined as

δ(A,B) := min{δ(a, b) : a ∈ A, b ∈ B}.

88 / 91

Extention to Other Metrics

Diameter and Distance

The diameter D(A) of a subset A of S is defined as

D(A) := max{δ(a, b) : a, b ∈ A}.

The distance δ(A,B) of two subsets A and B of S is
defined as

δ(A,B) := min{δ(a, b) : a ∈ A, b ∈ B}.

88 / 91

Extention to Other Metrics

WSPD in a metric space

For a real number s > 0, we say that the subsets A and B of S
are well-separated with respect to s if

δ(A,B) ≥ s ·max(D(A), D(B)).

Using this generalized notion of being well-separated, we
define a well-separated pair decomposition (WSPD) for S, with
respect to the separation ratio s, as in Definition 9.1.3.

89 / 91

Extention to Other Metrics

Open Problem

Which metric spaces (S, δ) admit a WSPD of subquadratic
size? Design efficient algorithms that compute such a WSPD.

90 / 91

Extention to Other Metrics

Open Problem

Which metric spaces (S, δ) admit a WSPD of subquadratic
size? Design efficient algorithms that compute such a WSPD.

90 / 91

91 / 91

	Definition of the well-separated pair decomposition
	Spanners Based on the WSPD
	The Split Tree
	Computing the Well-Separated Pair Decomposition
	Finding the pair that separate two points
	Extension to Other Metrics

